Monday, December 23, 2024

Advanced characterization of confined electrochemical interf…

Share


  • Simon, P. & Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 19, 1151–1163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, H., Wu, Y.-C., Lin, Z., Taberna, P.-L. & Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Article 

    Google Scholar
     

  • Fleischmann, S. et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 120, 6738–6782 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328, 480–483 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. A. et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat. Commun. 4, 1970 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Mater. 8, 702–730 (2015).

    CAS 

    Google Scholar
     

  • Beidaghi, M. & Gogotsi, Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Mater. 7, 867–884 (2014).

    CAS 

    Google Scholar
     

  • Merlet, C. et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat. Mater. 11, 306–310 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, J. et al. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. Nat. Nanotechnol. 15, 683–689 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Probing nanoconfined ion transport in electrified 2D laminate membranes with electrochemical impedance spectroscopy. Small Methods 6, e2200806 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hoang Ngoc Minh, T., Stoltz, G. & Rotenberg, B. Frequency and field-dependent response of confined electrolytes from brownian dynamics simulations. J. Chem. Phys. 158, 104103 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goikolea, E. & Mysyk, R. in Emerging Nanotechnologies in Rechargeable Energy Storage Systems 131–169 (2017).

  • Pal, B. et al. Understanding electrochemical capacitors with in situ techniques. Renew. Sustain. Energy Rev. 149, 111418 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Patra, A. et al. Understanding the charge storage mechanism of supercapacitors: in situ/operando spectroscopic approaches and theoretical investigations. J. Mater. Chem. A 9, 25852–25891 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. X. et al. Tracking ion transport in nanochannels via transient single-particle imaging. Angew. Chem. Int. Ed. 135, e202315805 (2023).

    Article 

    Google Scholar
     

  • Xin, W. et al. Tunable ion transport in two-dimensional nanofluidic channels. J. Phys. Chem. Lett. 14, 627–636 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boyd, S. et al. Effects of interlayer confinement and hydration on capacitive charge storage in birnessite. Nat. Mater. 20, 1689–1694 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Sub-nanometer confined ions and solvent molecules intercalation capacitance in microslits of 2D materials. Small 17, e2104649 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pean, C. et al. Confinement, desolvation, and electrosorption effects on the diffusion of ions in nanoporous carbon electrodes. J. Am. Chem. Soc. 137, 12627–12632 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleischmann, S. et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 7, 222–228 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, E. et al. Unraveling the capacitive charge storage mechanism of nitrogen-doped porous carbons by EQCM and ssNMR. J. Am. Chem. Soc. 144, 14217–14225 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, K., Shao, H., Raymundo-Piñero, E., Taberna, P.-L. & Simon, P. Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO). Nat. Commun. 15, 1935 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L., Raymundo-Pinero, E., Sunny, S., Taberna, P. L. & Simon, P. Role of surface terminations for charge storage of Ti3C2Tx MXene electrodes in aqueous acidic electrolyte. Angew. Chem. Int. Ed. 63, e202319238 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Structural disorder determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yin, H., Shao, H., Daffos, B., Taberna, P.-L. & Simon, P. The effects of local graphitization on the charging mechanisms of microporous carbon supercapacitor electrodes. Electrochem. Commun. 137, 107258 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Forse, A. C., Merlet, C., Griffin, J. M. & Grey, C. P. New perspectives on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prehal, C. et al. Tracking the structural arrangement of ions in carbon supercapacitor nanopores using in situ small-angle X-ray scattering. Energy Environ. Mater. 8, 1725–1735 (2015).

    CAS 

    Google Scholar
     

  • Futamura, R. et al. Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores. Nat. Mater. 16, 1225–1232 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mao, X. et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces. Nat. Mater. 18, 1350–1357 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. S., Koishi, A., Bourg, I. C. & Fenter, P. Ion correlations drive charge overscreening and heterogeneous nucleation at solid–aqueous electrolyte interfaces. Proc. Natl Acad. Sci. USA 118, e2105154118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction. Nat. Nanotechnol. 19, 479–484 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, Q., Tsai, W. Y. & Balke, N. In situ and operando force-based atomic force microscopy for probing local functionality in energy storage materials. Electrochem. Sci. Adv. 2, e2100038 (2021).

    Article 

    Google Scholar
     

  • Wang, H. et al. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism. J. Am. Chem. Soc. 135, 18968–18980 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forse, A. C. et al. NMR study of ion dynamics and charge storage in ionic liquid supercapacitors. J. Am. Chem. Soc. 137, 7231–7242 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Ion-specific nanoconfinement effect in multilayered graphene membranes: a combined nuclear magnetic resonance and computational study. Nano Lett. 23, 5555–5561 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quill, T. J. et al. An ordered, self-assembled nanocomposite with efficient electronic and ionic transport. Nat. Mater. 22, 362–368 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Forse, A. C. et al. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat. Energy 2, 16216 (2017).

    Article 

    Google Scholar
     

  • Chen, B. et al. Highly localized charges of confined electrical double layers inside 0.7 nm layered channels. Adv. Energy Mater. 13, 2300716 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaman, W. et al. In situ investigation of water on MXene interfaces. Proc. Natl Acad. Sci. USA 118, e2108325118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levi, M. D. et al. Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons. J. Am. Chem. Soc. 132, 13220–13222 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, W.-Y., Taberna, P.-L. & Simon, P. Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons. J. Am. Chem. Soc. 136, 8722–8728 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Griffin, J. M. et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat. Mater. 14, 812–819 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, L. et al. Understanding the charging of supercapacitors by electrochemical quartz crystal microbalance. Ind. Chem. Mater. 1, 175–187 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Levi, M. D., Daikhin, L., Aurbach, D. & Presser, V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: a mini-review. Electrochem. Commun. 67, 16–21 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sigalov, S., Levi, M. D., Daikhin, L., Salitra, G. & Aurbach, D. Electrochemical quartz crystal admittance studies of ion adsorption on nanoporous composite carbon electrodes in aprotic solutions. J. Solid State Electrochem. 18, 1335–1344 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Levi, M. D., Sigalov, S., Aurbach, D. & Daikhin, L. In situ electrochemical quartz crystal admittance methodology for tracking compositional and mechanical changes in porous carbon electrodes. J. Phys. Chem. C 117, 14876–14889 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Maurel, V. et al. Operando AC in-plane impedance spectroscopy of electrodes for energy storage systems. J. Electrochem. Soc. 169, 120510 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Marcotte, A., Mouterde, T., Nigues, A., Siria, A. & Bocquet, L. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19, 1057–1061 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gouy, M. On the constitution of the electric charge on the surface of an electrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).

    Article 
    CAS 

    Google Scholar
     

  • Chapman, D. L. LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dublin Philos. Mag. J. Sci. 25, 475–481 (1913).

    Article 

    Google Scholar
     

  • Stern, O. The theory of the electrolytic double-layer. Z. Elektrochem. 30, 1014–1020 (1924).


    Google Scholar
     

  • Frumkin, A., Petrii, O. & Damaskin, B. in Comprehensive Treatise of Electrochemistry: the Double Layer 221–289 (1980).

  • Trasatti, S. & Lust, E. in Modern Aspects of Electrochemistry Vol. 33 (eds White, R. A. et al.) 1–215 (Springer, 1999).

  • Wei, Z. et al. Relation between double layer structure, capacitance, and surface tension in electrowetting of graphene and aqueous electrolytes. J. Am. Chem. Soc. 146, 760–772 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alam, M. T., Islam, M. M., Okajima, T. & Ohsaka, T. Measurements of differential capacitance at mercury/room-temperature ionic liquids interfaces. J. Phys. Chem. C 111, 18326–18333 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Lockett, V., Horne, M., Sedev, R., Rodopoulos, T. & Ralston, J. Differential capacitance of the double layer at the electrode/ionic liquids interface. Phys. Chem. Chem. Phys. 12, 12499–12512 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, J. et al. Charge storage mechanisms of single-layer graphene in ionic liquid. J. Am. Chem. Soc. 141, 16559–16563 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uematsu, Y., Netz, R. R. & Bonthuis, D. J. The effects of ion adsorption on the potential of zero charge and the differential capacitance of charged aqueous interfaces. J. Phys. Condens. Matter 30, 064002 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, J. On obtaining double-layer capacitance and potential of zero charge from voltammetry. J. Electroanal. Chem. 870, 114243 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xu, P., von Rueden, A. D., Schimmenti, R., Mavrikakis, M. & Suntivich, J. Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nat. Mater. 22, 503–510 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y., Gordon, E. & Ren, H. Mapping the potential of zero charge and electrocatalytic activity of metal–electrolyte interface via a grain-by-grain approach. Anal. Chem. 92, 2859–2865 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCaffrey, D. L. et al. Mechanism of ion adsorption to aqueous interfaces: graphene/water vs. air/water. Proc. Natl Acad. Sci. USA 114, 13369–13373 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, C. et al. Measuring the pseudocapacitive behavior of individual V2O5 particles by scanning electrochemical cell microscopy. Anal. Chem. 95, 10565–10571 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebejer, N. et al. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu. Rev. Anal. Chem. 6, 329–351 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, Y. C. et al. Electrochemical characterization of single layer graphene/electrolyte interface: effect of solvent on the interfacial capacitance. Angew. Chem. Int. Ed. 60, 13317–13322 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaugstetter, M., Blanc, N., Kratz, M. & Tschulik, K. Electrochemistry under confinement. Chem. Soc. Rev. 51, 2491–2543 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. M., Merlet, C. & Smit, B. Carbons with regular pore geometry yield fundamental insights into supercapacitor charge storage. ACS Cent. Sci. 5, 1813–1823 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Merlet, C. et al. Highly confined ions store charge more efficiently in supercapacitors. Nat. Commun. 4, 2701 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B. et al. Interlayer confined water enabled pseudocapacitive sodium-ion storage in nonaqueous electrolyte. ACS Nano 18, 798–808 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lounasvuori, M. et al. Vibrational signature of hydrated protons confined in MXene interlayers. Nat. Commun. 14, 1322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baggio, B. F. & Grunder, Y. In situ X-ray techniques for electrochemical interfaces. Annu. Rev. Anal. Chem. 14, 87–107 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J. & Lee, P. S. Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv. Energy Mater. 11, 2003311 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kondrat, S. & Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Son, C. Y. & Wang, Z. G. Image-charge effects on ion adsorption near aqueous interfaces. Proc. Natl Acad. Sci. USA 118, e2020615118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondrat, S., Feng, G., Bresme, F., Urbakh, M. & Kornyshev, A. A. Theory and simulations of ionic liquids in nanoconfinement. Chem. Rev. 123, 6668–6715 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kondrat, S., Pérez, C., Presser, V., Gogotsi, Y. & Kornyshev, A. Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Mater. 5, 6474–6479 (2012).

    CAS 

    Google Scholar
     

  • Luo, Z.-X., Xing, Y.-Z., Ling, Y.-C., Kleinhammes, A. & Wu, Y. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nat. Commun. 6, 6358 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hey, D. et al. Identifying and preventing degradation in flavin mononucleotide-based redox flow batteries via NMR and EPR spectroscopy. Nat. Commun. 14, 5207 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forse, A. Nuclear Magnetic Resonance Studies of Ion Adsorption in Supercapacitor Electrodes. PhD thesis, Univ. Cambridge (2015).

  • Levy, A., de Souza, J. P. & Bazant, M. Z. Breakdown of electroneutrality in nanopores. J. Colloid Interface Sci. 579, 162–176 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robin, P., Delahais, A., Bocquet, L. & Kavokine, N. Ion filling of a one-dimensional nanofluidic channel in the interaction confinement regime. J. Chem. Phys. 158, 124703 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugahara, A. et al. Negative dielectric constant of water confined in nanosheets. Nat. Commun. 10, 850 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, T. et al. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide. Nat. Commun. 14, 8360 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, J. B., Wang, R., Ko, J. S., Long, J. W. & Augustyn, V. Critical role of structural water for enhanced Li+ insertion kinetics in crystalline tungsten oxides. J. Electrochem. Soc. 169, 030534 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tang, P. et al. Understanding pseudocapacitance mechanisms by synchrotron X‐ray analytical techniques. Energy Environ. Mater. 6, e12619 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Levi, M. D., Salitra, G., Levy, N., Aurbach, D. & Maier, J. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nat. Mater. 8, 872–875 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shpigel, N. et al. Can anions be inserted into MXene? J. Am. Chem. Soc. 143, 12552–12559 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, J. et al. Metal-ion oligomerization inside electrified carbon micropores and its effect on capacitive charge storage. Adv. Mater. 34, e2107439 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Lu, C. et al. Dehydration-enhanced ion–pore interactions dominate anion transport and selectivity in nanochannels. Sci. Adv. 9, eadf8412 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Z., Shao, H., Xu, K., Taberna, P.-L. & Simon, P. MXenes as high-rate electrodes for energy storage. Trends Chem. 2, 654–664 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tsai, W.-Y., Wang, R., Boyd, S., Augustyn, V. & Balke, N. Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy 81, 105592 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, K., Xian, Y. & Lin, Z. A method for deconvoluting and quantifying the real‐time species fluxes and ionic currents using in situ electrochemical quartz crystal microbalance. Adv. Mater. Interfaces 9, 2200112 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Michael, H., Jervis, R., Brett, D. J. L. & Shearing, P. R. Developments in dilatometry for characterisation of electrochemical devices. Batteries Supercaps 4, 1378–1396 (2021).

    Article 

    Google Scholar
     

  • Hu, M. et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10, 11344–11350 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, J., Zhang, Y., Kim, P. & Pinczuk, A. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Gittins, J. W. et al. Understanding electrolyte ion size effects on the performance of conducting metal–organic framework supercapacitors. J. Am. Chem. Soc. 146, 12473–12484 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Escobar-Teran, F. et al. Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by AC-electrogravimetry. Electrochem. Commun. 70, 73–77 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Frąckowiak, E., Płatek-Mielczarek, A., Piwek, J. & Fic, K. Advanced characterization techniques for electrochemical capacitors. Adv. Inorg. Chem. 79, 151–207 (2022).

    Article 

    Google Scholar
     

  • Eleri, O. E., Lou, F. & Yu, Z. in Nanostructured Materials for Supercapacitors 101–128 (2022).

  • Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Prim. 1, 41 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tivony, R., Safran, S., Pincus, P., Silbert, G. & Klein, J. Charging dynamics of an individual nanopore. Nat. Commun. 9, 4203 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Black, J. M. et al. Strain‐based in situ study of anion and cation insertion into porous carbon electrodes with different pore sizes. Adv. Energy Mater. 4, 1300683 (2014).

    Article 

    Google Scholar
     

  • Ge, K., Shao, H., Taberna, P.-L. & Simon, P. Understanding ion charging dynamics in nanoporous carbons for electrochemical double layer capacitor applications. ACS Energy Lett. 8, 2738–2745 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Henrique, F., Żuk, P. J. & Gupta, A. A network model to predict ionic transport in porous materials. Proc. Natl Acad. Sci. USA 121, e2401656121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, H. et al. Physics-based machine learning discovered nanocircuitry for nonlinear ion transport in nanoporous electrodes. J. Phys. Chem. C 127, 13699–13705 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. General design concepts for CAPodes as ionologic devices. Angew. Chem. 135, e202305397 (2023).

    Article 

    Google Scholar
     



  • Source link

    Read more

    Local News