Hinton, G. E. Learning multiple layers of representation. Trends Cogn. Sci. 11, 428–434 (2007).
Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1–23 (2011).
Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006).
Bartolozzi, C. & Indiveri, G. Synaptic dynamics in analog VLSI. Neural Comput. 19, 2581–2603 (2007).
Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).
Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7, 011305 (2020).
Tang, J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019).
Im, I. H., Kim, S. J. & Jang, H. W. Memristive devices for new computing paradigms. Adv. Intell. Syst. 2, 2000105 (2020).
Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).
Xi, Y. et al. In-memory learning with analog resistive switching memory: a review and perspective. Proc. IEEE 109, 14–42 (2021).
Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).
Kim, S. J., Kim, S. B. & Jang, H. W. Competing memristors for brain-inspired computing. iScience 24, 101889 (2021).
Zhao, M., Gao, B., Tang, J., Qian, H. & Wu, H. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 7, 011301 (2020).
Jacobs-Gedrim, R. B. et al. Impact of linearity and write noise of analog resistive memory devices in a neural algorithm accelerator. In 2017 IEEE Int. Conf. Rebooting Comput. (ICRC) 1–10 (IEEE, 2017).
Han, H., Yu, H., Wei, H., Gong, J. & Xu, W. Recent progress in three‐terminal artificial synapses: from device to system. Small 15, 1900695 (2019).
Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).
Woo, J. et al. Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems. IEEE Trans. Electron Devices 63, 5064–5067 (2016).
Jang, J. W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y. H. Optimization of conductance change in Pr1−xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36, 457–459 (2015).
Chen, P. Y. et al. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. In 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015 194–199 (2016).
Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).
Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).
Choi, J. et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 28, 6562–6567 (2016).
Choi, J. et al. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl. Mater. Interfaces 9, 30764–30771 (2017).
Choi, J., Han, J. S., Hong, K., Kim, S. Y. & Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30, 1–21 (2018).
Kim, S. G., Han, J. S., Kim, H., Kim, S. Y. & Jang, H. W. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 3, 1–30 (2018).
Kwak, K. J., Lee, D. E., Kim, S. J. & Jang, H. W. Halide perovskites for memristive data storage and artificial synapses. J. Phys. Chem. Lett. 12, 8999–9010 (2021).
Han, J. S. et al. Lead‐free dual‐phase halide perovskites for preconditioned conducting‐bridge memory. Small 16, 2003225 (2020).
Im, I. H. et al. Controlling threshold and resistive switch functionalities in Ag‐incorporated organometallic halide perovskites for memristive crossbar array. Adv. Funct. Mater. 33, 2211358 (2023).
Lee, Y. J. et al. High hole mobility inorganic halide perovskite field‐effect transistors with enhanced phase stability and interfacial defect tolerance. Adv. Electron. Mater. 8, 2100624 (2022).
Hong, K. et al. Strong Fermi-level pinning at metal contacts to halide perovskites. J. Mater. Chem. C 9, 15212–15220 (2021).
Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).
Zhang, F. et al. Advances in two-dimensional organic-inorganic hybrid perovskites. Energy Environ. Sci. 13, 1154–1186 (2020).
Shi, Z., Ni, Z. & Huang, J. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7, 984–987 (2022).
Kim, S. J. et al. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022).
Niu, T. et al. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019).
Guo, W., Yang, Z., Dang, J. & Wang, M. Progress and perspective in Dion–Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86, 106129 (2021).
Niu, T., Xue, Q. & Yip, H. L. Advances in Dion–Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics 10, 2069–2102 (2021).
Ahmad, S. et al. Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3, 794–806 (2019).
Kang, K. et al. High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 31, 1804841 (2019).
John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).
Walker, B., Kim, G. H. & Kim, J. Y. Pseudohalides in lead-based perovskite semiconductors. Adv. Mater. 31, 1–7 (2019).
Li, X. et al. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 140, 12226–12238 (2018).
Zhang, T. et al. Interfacial crosslinked quasi-2D perovskite with boosted carrier transport and enhanced stability. J. Phys. D 51, 404001 (2018).
Li, Y. et al. Bifunctional organic spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite solar cells. Nano Lett. 19, 150–157 (2019).
Yu, H. et al. Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells. Adv. Sci. 8, 1–10 (2021).
Zhang, F. & Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1–26 (2020).
Zhang, X. et al. Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 13, 2–9 (2017).
Zhang, X. et al. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8, 1–9 (2018).
Han, J. S. et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces 11, 8155–8163 (2019).
Kwak, K. J. et al. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett. 22, 6010–6017 (2022).
Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).
Hebb, D. O. The Organization of Behavior: a Neuropsychological Theory (Psychology Press, 2002).
Shi, J. et al. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7, 984–987 (2022).
Bagdzevicius, S. et al. Interface-type resistive switching in perovskite materials. J. Electroceram. 39, 157–184 (2017).
Lyashenko, D., Perez, A. & Zakhidov, A. High‐resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Phys. Status Solidi a 214, 1600302 (2017).
Liu, Y. et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 13, 2042–2049 (2019).
Pourdavoud, N. et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo‐metal halide perovskites. Adv. Mater. 29, 1605003 (2017).
Zou, C. et al. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020).
Harwell, J. et al. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13, 3823–3829 (2019).