Friday, November 22, 2024

Linearly programmable two-dimensional halide perovskite memr…

Share


  • Hinton, G. E. Learning multiple layers of representation. Trends Cogn. Sci. 11, 428–434 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 1–23 (2011).

    Article 

    Google Scholar
     

  • Indiveri, G., Chicca, E. & Douglas, R. A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans. Neural Netw. 17, 211–221 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Bartolozzi, C. & Indiveri, G. Synaptic dynamics in analog VLSI. Neural Comput. 19, 2581–2603 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018).

    Article 

    Google Scholar
     

  • Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7, 011305 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tang, J. et al. Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31, 1902761 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Im, I. H., Kim, S. J. & Jang, H. W. Memristive devices for new computing paradigms. Adv. Intell. Syst. 2, 2000105 (2020).

    Article 

    Google Scholar
     

  • Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xi, Y. et al. In-memory learning with analog resistive switching memory: a review and perspective. Proc. IEEE 109, 14–42 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).

    Article 

    Google Scholar
     

  • Kim, S. J., Kim, S. B. & Jang, H. W. Competing memristors for brain-inspired computing. iScience 24, 101889 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhao, M., Gao, B., Tang, J., Qian, H. & Wu, H. Reliability of analog resistive switching memory for neuromorphic computing. Appl. Phys. Rev. 7, 011301 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jacobs-Gedrim, R. B. et al. Impact of linearity and write noise of analog resistive memory devices in a neural algorithm accelerator. In 2017 IEEE Int. Conf. Rebooting Comput. (ICRC) 1–10 (IEEE, 2017).

  • Han, H., Yu, H., Wei, H., Gong, J. & Xu, W. Recent progress in three‐terminal artificial synapses: from device to system. Small 15, 1900695 (2019).

    Article 

    Google Scholar
     

  • Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Woo, J. et al. Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems. IEEE Trans. Electron Devices 63, 5064–5067 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jang, J. W., Park, S., Burr, G. W., Hwang, H. & Jeong, Y. H. Optimization of conductance change in Pr1−xCaxMnO3-based synaptic devices for neuromorphic systems. IEEE Electron Device Lett. 36, 457–459 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. Y. et al. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. In 2015 IEEE/ACM Int. Conf. Comput. Des. ICCAD 2015 194–199 (2016).

  • Azpiroz, J. M., Mosconi, E., Bisquert, J. & De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Haruyama, J., Sodeyama, K., Han, L. & Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 28, 6562–6567 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, J. et al. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl. Mater. Interfaces 9, 30764–30771 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Choi, J., Han, J. S., Hong, K., Kim, S. Y. & Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 30, 1–21 (2018).

    CAS 

    Google Scholar
     

  • Kim, S. G., Han, J. S., Kim, H., Kim, S. Y. & Jang, H. W. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol. 3, 1–30 (2018).

    Article 

    Google Scholar
     

  • Kwak, K. J., Lee, D. E., Kim, S. J. & Jang, H. W. Halide perovskites for memristive data storage and artificial synapses. J. Phys. Chem. Lett. 12, 8999–9010 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han, J. S. et al. Lead‐free dual‐phase halide perovskites for preconditioned conducting‐bridge memory. Small 16, 2003225 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Im, I. H. et al. Controlling threshold and resistive switch functionalities in Ag‐incorporated organometallic halide perovskites for memristive crossbar array. Adv. Funct. Mater. 33, 2211358 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. J. et al. High hole mobility inorganic halide perovskite field‐effect transistors with enhanced phase stability and interfacial defect tolerance. Adv. Electron. Mater. 8, 2100624 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hong, K. et al. Strong Fermi-level pinning at metal contacts to halide perovskites. J. Mater. Chem. C 9, 15212–15220 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, X., Hoffman, J. M. & Kanatzidis, M. G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency. Chem. Rev. 121, 2230–2291 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Advances in two-dimensional organic-inorganic hybrid perovskites. Energy Environ. Sci. 13, 1154–1186 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z., Ni, Z. & Huang, J. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7, 984–987 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. J. et al. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today 52, 19–30 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Niu, T. et al. Reduced-dimensional perovskite enabled by organic diamine for efficient photovoltaics. J. Phys. Chem. Lett. 10, 2349–2356 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guo, W., Yang, Z., Dang, J. & Wang, M. Progress and perspective in Dion–Jacobson phase 2D layered perovskite optoelectronic applications. Nano Energy 86, 106129 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Niu, T., Xue, Q. & Yip, H. L. Advances in Dion–Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics 10, 2069–2102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, S. et al. Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3, 794–806 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kang, K. et al. High-performance solution-processed organo-metal halide perovskite unipolar resistive memory devices in a cross-bar array structure. Adv. Mater. 31, 1804841 (2019).

    Article 

    Google Scholar
     

  • John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Walker, B., Kim, G. H. & Kim, J. Y. Pseudohalides in lead-based perovskite semiconductors. Adv. Mater. 31, 1–7 (2019).

    Article 

    Google Scholar
     

  • Li, X. et al. Two-dimensional halide perovskites incorporating straight chain symmetric diammonium ions, (NH3CmH2mNH3)(CH3NH3)n−1PbnI3n+1 (m = 4–9; n = 1–4). J. Am. Chem. Soc. 140, 12226–12238 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Interfacial crosslinked quasi-2D perovskite with boosted carrier transport and enhanced stability. J. Phys. D 51, 404001 (2018).

    Article 

    Google Scholar
     

  • Li, Y. et al. Bifunctional organic spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite solar cells. Nano Lett. 19, 150–157 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yu, H. et al. Thermal and humidity stability of mixed spacer cations 2D perovskite solar cells. Adv. Sci. 8, 1–10 (2021).

    Article 

    Google Scholar
     

  • Zhang, F. & Zhu, K. Additive engineering for efficient and stable perovskite solar cells. Adv. Energy Mater. 10, 1–26 (2020).


    Google Scholar
     

  • Zhang, X. et al. Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability. Small 13, 2–9 (2017).


    Google Scholar
     

  • Zhang, X. et al. Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8, 1–9 (2018).


    Google Scholar
     

  • Han, J. S. et al. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces 11, 8155–8163 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kwak, K. J. et al. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett. 22, 6010–6017 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hebb, D. O. The Organization of Behavior: a Neuropsychological Theory (Psychology Press, 2002).

  • Shi, J. et al. Direct observation of fast carriers transport along out-of-plane direction in a Dion–Jacobson layered perovskite. ACS Energy Lett. 7, 984–987 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bagdzevicius, S. et al. Interface-type resistive switching in perovskite materials. J. Electroceram. 39, 157–184 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lyashenko, D., Perez, A. & Zakhidov, A. High‐resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Phys. Status Solidi a 214, 1600302 (2017).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Fluorescent microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano 13, 2042–2049 (2019).

    PubMed 
    CAS 

    Google Scholar
     

  • Pourdavoud, N. et al. Photonic nanostructures patterned by thermal nanoimprint directly into organo‐metal halide perovskites. Adv. Mater. 29, 1605003 (2017).

    Article 

    Google Scholar
     

  • Zou, C. et al. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20, 3710–3717 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harwell, J. et al. Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13, 3823–3829 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link

    Read more

    Local News