Friday, October 11, 2024

Advancements in employing two-dimensional nanomaterials for …

Share


  • Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive materials promote Wound Healing through Modulation of Cell behaviors. Adv Sci 2022, 9.

  • Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z, Cheng Y, Yang R, Zhao G. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B. 2021;9:3106–30.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58:81–94.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang J, Li L, Yu J, Zhang F, Shi J, Li M, Liu J, Li H, Gao J, Wu Y. Autophagy-modulated Biomaterial: a Robust Weapon for modulating the Wound Environment to promote skin Wound Healing. Int J Nanomed. 2023;18:2567–88.

    Article 
    CAS 

    Google Scholar
     

  • Krishnaswami V, Raju NS, Alagarsamy S, Kandasamy R. Novel nanocarriers for the treatment of Wound Healing. Curr Pharm Design. 2020;26:4591–600.

    Article 
    CAS 

    Google Scholar
     

  • Singer AJ. Healing mechanisms in cutaneous wounds: tipping the balance. Tissue Eng Part B: Reviews. 2022;28:1151–67.

    Article 
    CAS 

    Google Scholar
     

  • Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019, 8.

  • Kushwaha A, Goswami L, Kim BS. Nanomaterial-based therapy for Wound Healing. Nanomaterials 2022, 12.

  • Vivcharenko V, Trzaskowska M, Przekora A. Wound dressing modifications for Accelerated Healing of infected wounds. Int J Mol Sci 2023, 24.

  • Fernández-Guarino M, Hernández-Bule ML, Bacci S. Cellular and molecular processes in Wound Healing. Biomedicines 2023, 11.

  • Park H, Kim J-U, Kim S, Hwang NS, Kim HD. Sprayable Ti3C2 MXene hydrogel for wound healing and drug release system. Mater Today Bio 2023.

  • Dong R, Guo B. Smart wound dressings for wound healing. Nano Today 2021, 41.

  • Shariati A, Hosseini SM, Chegini Z, Seifalian A, Arabestani MR. Graphene-based materials for inhibition of wound infection and accelerating Wound Healing. Biomed Pharmacother 2023, 158.

  • Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull. 2019;64:1707–27.

    Article 
    CAS 

    Google Scholar
     

  • Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, Oktafiani A, Adila FP, Putra MFH. Crafting two-dimensional materials for contrast agents, drug, and heat delivery applications through green technologies. J Drug Target. 2023;31:369–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen EP, de Carvalho Castro Silva C, Merkoçi A. Recent advancement in biomedical applications on the surface of two-dimensional materials: from biosensing to tissue engineering. Nanoscale. 2020;12:19043–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang L, Li Y, Zhao L, Qi Z, Gou J, Zhang S, Zhang JZ. Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale. 2020;12:19516–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for Biomedical Applications: emerging trends and Future prospects. Adv Mater. 2015;27:7261–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saeed S, Martins-Green M. Animal models for the study of acute cutaneous wound healing. Wound Repair Regeneration. 2022;31:6–16.

    Article 
    PubMed 

    Google Scholar
     

  • Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and New Emerging technologies for skin Wound Care and Regeneration. Pharmaceutics 2020, 12.

  • Yang X, Xiao X, Wang L, Ao Y, Song Y, Wang H, Wang H. Application of antimicrobial drugs in perioperative surgical incision. Ann Clin Microbiol Antimicrob 2018, 17.

  • Goodwin J, Womack P, Moore B, Laureano Phillips J, Duane T. Incision classification accuracy: do residents know how to classify them? Surg Infect. 2017;18:874–8.

    Article 

    Google Scholar
     

  • Yang Y, Zhao X, Yu J, Chen X, Wang R, Zhang M, Zhang Q, Zhang Y, Wang S, Cheng Y. Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment. Bioactive Mater. 2021;6:3962–75.

    Article 
    CAS 

    Google Scholar
     

  • Pathak PC, Gadgoli CH. Exploring the efficacy of panchavalkal extract and Zinc-Copper Bhasma in promoting wound healing in incision and excision wound models in the rat. J Ethnopharmacol 2024, 320.

  • Skin graft using MatriDerm® for plantar defects after excision of skin cancer. Cancer Management and Research 2019, Volume 11:2947–2950.

  • He S, Shi D, Han Z, Dong Z, Xie Y, Zhang F, Zeng W, Yi Q. Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed Eng Online 2019, 18.

  • Panagiotou D, Filidou E, Gaitanidou M, Tarapatzi G, Spathakis M, Kandilogiannakis L, Stavrou G, Arvanitidis K, Tsetis JK, Gionga P et al. Role of Lactiplantibacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58 and Bifidobacterium longum UBBL-64 in the Wound Healing Process of the Excisional Skin. Nutrients 2023, 15.

  • Yampolsky M, Bachelet I, Fuchs Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat Protoc 2023.

  • He Y, Luo K, Hu X, Liu J, Hao M, Li Y, Xia X, Lü X, Shi C. Antibacterial Mechanism of Shikonin against Vibrio vulnificus and its healing potential on infected mice with full-thickness excised skin. Foodborne Pathog Dis. 2023;20:67–79.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moysidis M, Stavrou G, Cheva A, Abba Deka I, Tsetis JK, Birba V, Kapoukranidou D, Ioannidis A, Tsaousi G, Kotzampassi K. The 3-D configuration of excisional skin wound healing after topical probiotic application. Injury. 2022;53:1385–93.

    Article 
    PubMed 

    Google Scholar
     

  • Lintel H, Abbas DB, Lavin CV, Griffin M, Guo JL, Guardino N, Churukian A, Gurtner GC, Momeni A, Longaker MT, Wan DC. Transdermal deferoxamine administration improves excisional wound healing in chronically irradiated murine skin. J Translational Med 2022, 20.

  • Barbalho GN, Matos BN, Espirito Santo MEL, Silva VRC, Chaves SB, Gelfuso GM, Cunha-Filho M, Gratieri T. In vitro skin model for the evaluation of burn healing drug delivery systems. J Drug Deliv Sci Technol 2021, 62.

  • Nunes PS, Rabelo AS, Souza JCCd, Santana BV, da Silva TMM, Serafini MR, dos Passos Menezes P, dos Santos Lima B, Cardoso JC, Alves JCS, et al. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int J Pharm. 2016;513:473–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simões TMS, de Alencar Fernandes Neto J, Nonaka CFW, de Vasconcelos Catão MHC. Effects of photobiomodulation therapy with red LED on inflammatory cells during the healing of skin burns. Lasers Med Sci. 2022;37:2817–22.

    Article 
    PubMed 

    Google Scholar
     

  • Fiorentini F, Suarato G, Summa M, Miele D, Sandri G, Bertorelli R, Athanassiou A. Plant-Based, hydrogel-like microfibers as an antioxidant platform for skin burn Healing. ACS Appl Bio Mater. 2023;6:3103–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cabello-Arista B, Melgarejo-Ramírez Y, Retana-Flores A, Martínez-López V, Márquez-Gutiérrez E, Almanza-Pérez J, Lecona H, Reyes-Frías ML, Ibarra C, Martínez-Pardo ME et al. Effects of mesenchymal stem cell culture on radio sterilized human amnion or radio sterilized pig skin in burn wound healing. Cell Tissue Banking 2022.

  • Huangfu Y, Li S, Deng L, Zhang J, Huang P, Feng Z, Kong D, Wang W, Dong A. Skin-Adaptable, long-lasting moisture, and temperature-tolerant hydrogel dressings for accelerating burn Wound Healing without secondary damage. ACS Appl Mater Interfaces. 2021;13:59695–707.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan MA, Hussain Z, Ali S, Qamar Z, Imran M, Hafeez FY. Fabrication of Electrospun Probiotic functionalized nanocomposite scaffolds for infection control and Dermal Burn Healing in a mice Model. ACS Biomaterials Sci Eng. 2019;5:6109–16.

    Article 
    CAS 

    Google Scholar
     

  • Nozari M, Gholizadeh M, Zahiri Oghani F, Tahvildari K. Studies on novel chitosan/alginate and chitosan/bentonite flexible films incorporated with ZnO nano particles for accelerating dermal burn healing: in vivo and in vitro evaluation. Int J Biol Macromol. 2021;184:235–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Y-K, Cheng N-C, Cheng C-M. Biofilms in Chronic wounds: Pathogenesis and diagnosis. Trends Biotechnol. 2019;37:505–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuentes I, Yubero MJ, Morandé P, Varela C, Oróstica K, Acevedo F, Rebolledo-Jaramillo B, Arancibia E, Porte L, Palisson F. Longitudinal study of wound healing status and bacterial colonisation of Staphylococcus aureus and Corynebacterium diphtheriae in epidermolysis bullosa patients. Int Wound J. 2022;20:774–83.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bi M, Qin Y, Wang L, Zhang J. The protective role of resveratrol in diabetic wound healing. Phytother Res. 2023;37:5193–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dixon D, Edmonds M. Managing Diabetic Foot Ulcers: Pharmacotherapy for Wound Healing. Drugs. 2020;81:29–56.

    Article 

    Google Scholar
     

  • Ezhilarasu H, Vishalli D, Dheen ST, Bay B-H, Srinivasan DK. Nanoparticle-based Therapeutic Approach for Diabetic Wound Healing. Nanomaterials 2020, 10.

  • Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired Wound Healing in Diabetes Mellitus: New insights. Adv Therapy. 2014;31:817–36.

    Article 
    CAS 

    Google Scholar
     

  • Yampolsky M, Bachelet I, Fuchs Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat Protoc. 2023;19:184–206.

    Article 
    PubMed 

    Google Scholar
     

  • Bhattarai-Kline S, Lear SK, Shipman SL. One-step data storage in cellular DNA. Nat Chem Biol. 2021;17:232–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eming SA, Murray PJ, Pearce EJ. Metabolic orchestration of the wound healing response. Cell Metabol. 2021;33:1726–43.

    Article 
    CAS 

    Google Scholar
     

  • Oliveira A, Simões S, Ascenso A, Reis CP. Therapeutic advances in wound healing. J Dermatological Treat. 2020;33:2–22.

    Article 

    Google Scholar
     

  • Maleki A, He J, Bochani S, Nosrati V, Shahbazi M-A, Guo B. Multifunctional photoactive hydrogels for Wound Healing Acceleration. ACS Nano. 2021;15:18895–930.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu Y, Chen H, Fang Y, Wu J. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater 2022, 11.

  • Zhang H, Liu S, Yang X, Chen N, Pang F, Chen Z, Wang T, Zhou J, Ren F, Xu X, Li T. LED phototherapy with gelatin sponge promotes Wound Healing in mice. Photochem Photobiol. 2017;94:179–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang M-C, Guo J-X, Chen L-J, Zhao X. Acrylate-functionalized porphyrin-covalent organic framework for bacterial-targeted and reaction-enhanced synergistic phototherapy/chemotherapy toward sterilization and wound healing. Biomaterials Sci. 2023;11:1776–84.

    Article 
    CAS 

    Google Scholar
     

  • Wang X, Qiu L, Wang C, Gao Z, Zhou S, Cui P, Jiang P, Hu H, Ni X, Du X, et al. Nanodot-doped peptide hydrogels for antibacterial phototherapy and wound healing. Biomaterials Sci. 2022;10:654–64.

    Article 
    CAS 

    Google Scholar
     

  • Razack SA, Lee Y, Shin H, Duraiarasan S, Chun B-S, Kang HW. Cellulose nanofibrils reinforced chitosan-gelatin based hydrogel loaded with nanoemulsion of oregano essential oil for diabetic wound healing assisted by low level laser therapy. Int J Biol Macromol. 2023;226:220–39.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Zhu G, Xu W, Wang M, Xie Y, Bao Z, Qi M, Gao M, Li C. Construction of mPt/ICG-αA nanoparticles with enhanced phototherapeutic activities for multidrug-resistant bacterial eradication and wound healing. Nanoscale. 2023;15:13617–27.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oyebode O, Houreld NN, Abrahamse H. Photobiomodulation in diabetic wound healing: a review of red and near-infrared wavelength applications. Cell Biochem Funct. 2021;39:596–612.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun B, Ye Z, Zhang M, Song Q, Chu X, Gao S, Zhang Q, Jiang C, Zhou N, Yao C, Shen J. Light-activated biodegradable Covalent Organic Framework-Integrated Heterojunction for Photodynamic, Photothermal, and gaseous therapy of chronic wound infection. ACS Appl Mater Interfaces. 2021;13:42396–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayat M, Albright R, Hamblin MR, Chien S. Impact of Blue Light Therapy on Wound Healing in Preclinical and clinical subjects: a systematic review. J Lasers Med Sci 2022, 13.

  • Tian Q, Yang Y, Li A, Chen Y, Li Y, Sun L, Shang L, Gao L, Zhang L. Ferrihydrite nanoparticles as the photosensitizer augment microbial infected wound healing with blue light. Nanoscale. 2021;13:19123–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verdes M, Mace K, Margetts L, Cartmell S. Status and challenges of electrical stimulation use in chronic wound healing. Curr Opin Biotechnol 2022, 75.

  • Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma 2018, 6.

  • Ferreira CL, Neves Jardini MA, Moretto Nunes CM, Bernardo DV, Viana Casarin RC, dos Santos Gedraite E, Mathias MA, Liu F, Mendonça G. Silveira Mendonça DB, Santamaria MP: electrical stimulation enhances early palatal wound healing in mice. Arch Oral Biol 2021, 122.

  • Rabbani M, Rahman E, Powner MB, Triantis IF. Making sense of Electrical Stimulation: a Meta-analysis for Wound Healing. Ann Biomed Eng 2023.

  • Khouri C, Kotzki S, Roustit M, Blaise S, Gueyffier F, Cracowski J-L. Hierarchical evaluation of electrical stimulation protocols for chronic wound healing: an effect size meta-analysis. Wound Repair Regeneration. 2017;25:883–91.

    Article 
    PubMed 

    Google Scholar
     

  • Liao W, Yang D, Xu Z, Zhao L, Mu C, Li D, Ge L. Antibacterial Collagen-based nanocomposite dressings for promoting infected Wound Healing. Adv Healthc Mater 2023, 12.

  • Sun L, Li L, Wang Y, Li M, Xu S, Zhang C. A collagen-based bi-layered composite dressing for accelerated wound healing. J Tissue Viability. 2022;31:180–9.

    Article 
    PubMed 

    Google Scholar
     

  • Cheng Y, Li Y, Huang S, Yu F, Bei Y, Zhang Y, Tang J, Huang Y, Xiang Q. Hybrid freeze-dried dressings composed of epidermal growth factor and recombinant Human-Like Collagen Enhance Cutaneous Wound Healing in rats. Front Bioeng Biotechnol 2020, 8.

  • Kou Z, Li B, Aierken A, Tan N, Li C, Han M, Jing Y, Li N, Zhang S, Peng S et al. Mesenchymal stem cells pretreated with collagen promote skin Wound-Healing. Int J Mol Sci 2023, 24.

  • Shen X-R, Chen X-L, Xie H-X, He Y, Chen W, Luo Q, Yuan W-H, Tang X, Hou D-Y, Jiang D-W, Wang Q-R. Beneficial effects of a novel shark-skin collagen dressing for the promotion of seawater immersion wound healing. Military Med Res 2017, 4.

  • Pang C, Fan KS, Wei L, Kolar MK. Gene therapy in wound healing using nanotechnology. Wound Repair Regeneration. 2020;29:225–39.

    Article 
    PubMed 

    Google Scholar
     

  • Catanzano O, Quaglia F, Boateng JS. Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opin Drug Deliv. 2021;18:737–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Legrand JMD, Martino MM. Growth factor and cytokine Delivery systems for Wound Healing. Cold Spring Harb Perspect Biol 2022, 14.

  • Rabbani PS, Zhou A, Borab ZM, Frezzo JA, Srivastava N, More HT, Rifkin WJ, David JA, Berens SJ, Chen R, et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials. 2017;132:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bailore NN, Sarojini BK, Harshitha KR. Fabrication and determination of the Sun Protection Factor and Ultraviolet Protection Factor for Piscean Collagen/Bischalcone Derivative (B1) Composite films with wide-range UV shielding. ACS Omega. 2022;7:27876–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhoke NR, Kaushik K, Das A. Cxcr6-Based mesenchymal stem cell gene therapy potentiates skin regeneration in Murine Diabetic wounds. Mol Ther. 2020;28:1314–26.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu J, Min D, Guo G, Liao X, Fu Z. Experimental study of epidermal growth factor and acidic fibroblast growth factor in the treatment of diabetic foot wounds. Experimental Therapeutic Med 2018.

  • Willy C, Agarwal A, Andersen CA, Santis GD, Gabriel A, Grauhan O, Guerra OM, Lipsky BA, Malas MB, Mathiesen LL, et al. Closed incision negative pressure therapy: international multidisciplinary consensus recommendations. Int Wound J. 2016;14:385–98.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kantak NA, Mistry R, Varon DE, Halvorson EG. Negative pressure wound therapy for Burns. Clin Plast Surg. 2017;44:671–7.

    Article 
    PubMed 

    Google Scholar
     

  • Nuhiji E. Trends and Innovation in Negative Pressure Wound Therapy: A Review of Burn Wound Management. Advances in Wound Care 2023.

  • Zwanenburg PR, Tol BT, de Vries FEE, Boermeester MA. Incisional negative pressure Wound Therapy for Surgical Site infection Prophylaxis in the post-antibiotic era. Surg Infect. 2018;19:821–30.

    Article 

    Google Scholar
     

  • Qiu X, Luo H, Huang G. Roles of negative pressure wound therapy for scar revision. Front Physiol 2023, 14.

  • Qiu X, Wu Y, Zhang D, Zhang H, Yu A, Li Z. Roles of Oxidative Stress and Raftlin in Wound Healing Under Negative-Pressure Wound Therapy. Clinical, Cosmetic and Investigational Dermatology 2021, Volume 14:1745–1753.

  • Wu M, Liu Q, Yu Z, Karvar M, Aoki S, Hamaguchi R, Ma C, Orgill DP, Panayi AC. Negative-pressure wound therapy induces Lymphangiogenesis in Murine Diabetic Wound Healing. Plast Reconstr Surg. 2022;151:779–90.

    Article 
    PubMed 

    Google Scholar
     

  • Xu K, Deng S, Zhu Y, Yang W, Chen W, Huang L, Zhang C, Li M, Ao L, Jiang Y et al. Platelet Rich plasma loaded multifunctional hydrogel accelerates Diabetic Wound Healing via regulating the continuously abnormal microenvironments. Adv Healthc Mater 2023, 12.

  • Zhou S, Li L, Chen C, Chen Y, Zhou L, Zhou FH, Dong J, Wang L. Injectable gelatin microspheres loaded with platelet rich plasma improve wound healing by regulating early inflammation. Int J Med Sci. 2021;18:1910–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long DW, Johnson NR, Jeffries EM, Hara H, Wang Y. Controlled delivery of platelet-derived proteins enhances porcine wound healing. J Controlled Release. 2017;253:73–81.

    Article 
    CAS 

    Google Scholar
     

  • Giuliani C. The flavonoid quercetin induces AP-1 activation in FRTL-5 thyroid cells. Antioxidants 2019, 8.

  • Liao X, Liang J-X, Li S-H, Huang S, Yan J-X, Xiao L-L, Song J-X, Liu H-W. Allogeneic platelet-rich plasma therapy as an effective and safe adjuvant method for chronic wounds. J Surg Res. 2020;246:284–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Murali A, Lokhande G, Deo KA, Brokesh A, Gaharwar AK. Emerging 2D nanomaterials for biomedical applications. Mater Today. 2021;50:276–302.

    Article 
    CAS 

    Google Scholar
     

  • Hu H, Zavabeti A, Quan H, Zhu W, Wei H, Chen D, Ou JZ. Recent advances in two-dimensional transition metal dichalcogenides for biological sensing. Biosens Bioelectron 2019, 142.

  • Derakhshi M, Daemi S, Shahini P, Habibzadeh A, Mostafavi E, Ashkarran AA. Two-Dimensional nanomaterials beyond Graphene for Biomedical Applications. J Funct Biomaterials 2022, 13.

  • Sun W, Wu FG. Two-Dimensional materials for antimicrobial applications: Graphene materials and Beyond. Chem – Asian J. 2018;13:3378–410.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansari MO, Gauthaman K, Essa A, Bencherif SA, Memic A. Graphene and Graphene-based materials in Biomedical Applications. Curr Med Chem. 2019;26:6834–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raslan A, Saenz del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm 2020, 580.

  • Raja IS, Jang HJ, Kang MS, Kim KS, Choi YS, Jeon J-R, Lee JH, Han D-W. Role of Graphene Family Nanomaterials in Skin Wound Healing and Regeneration. In Multifaceted Biomedical Applications of Graphene. 2022: 89–105: Advances in Experimental Medicine and Biology].

  • Jaleel JA, Sruthi S, Pramod K. Reinforcing nanomedicine using graphene family nanomaterials. J Controlled Release. 2017;255:218–30.

    Article 
    CAS 

    Google Scholar
     

  • Gurunathan S, Kim J-H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials. Int J Nanomed 2016.

  • Tu YS, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu ZR, Huang Q, Fan CH, Fang HP, Zhou RH. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheetsvol 8, pg 594, (2013). Nature Nanotechnology 2013, 8.

  • da Luz F, Garcia Filho F, del-Río M, Nascimento L, Pinheiro W, Monteiro S. Graphene-Incorporated Natural Fiber Polymer composites: a first overview. Polymers 2020, 12.

  • Qiu Y, Wang Z, Owens ACE, Kulaots I, Chen Y, Kane AB, Hurt RH. Antioxidant chemistry of graphene-based materials and its role in oxidation protection technology. Nanoscale. 2014;6:11744–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Mu F, Wang Y, Zhao H. Graphene and Graphene-based nanomaterials for DNA detection: a review. Molecules 2018, 23.

  • Losada-Garcia N, Berenguer-Murcia A, Cazorla-Amorós D, Palomo J. Efficient production of Multi-layer Graphene from Graphite Flakes in Water by lipase-graphene sheets conjugation. Nanomaterials 2019, 9.

  • Ali IH, Ouf A, Elshishiny F, Taskin MB, Song J, Dong M, Chen M, Siam R, Mamdouh W. Antimicrobial and Wound-Healing activities of Graphene-Reinforced Electrospun Chitosan/Gelatin nanofibrous nanocomposite scaffolds. ACS Omega. 2022;7:1838–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du S, Liu B, Li Z, Tan H, Qi W, Liu T, Qiang S, Zhang T, Song F, Chen X, et al. A Nanoporous Graphene/Nitrocellulose Membrane Beneficial to Wound Healing. ACS Appl Bio Mater. 2021;4:4522–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary P, Ramalingam B, Das SK. Fabrication of Chitosan-Reinforced Multifunctional Graphene Nanocomposite as Antibacterial scaffolds for Hemorrhage Control and Wound-Healing application. ACS Biomaterials Sci Eng. 2020;6:5911–29.

    Article 
    CAS 

    Google Scholar
     

  • Chen X, Peng Y, Xue H, Liu G, Wang N, Shao Z. MiR-21 regulating PVT1/PTEN/IL-17 axis towards the treatment of infectious diabetic wound healing by modified GO-derived biomaterial in mouse models. J Nanobiotechnol 2022, 20.

  • D’Amora U, Dacrory S, Hasanin MS, Longo A, Soriente A, Kamel S, Raucci MG, Ambrosio L, Scialla S. Advances in the Physico-Chemical, Antimicrobial and Angiogenic properties of Graphene-Oxide/Cellulose nanocomposites for Wound Healing. Pharmaceutics 2023, 15.

  • Nandhakumar M, Thangaian DT, Sundaram S, Roy A, Subramanian B. An enduring in vitro wound healing phase recipient by bioactive glass-graphene oxide nanocomposites. Sci Rep 2022, 12.

  • Nowroozi N, Faraji S, Nouralishahi A, Shahrousvand M. Biological and structural properties of graphene oxide/curcumin nanocomposite incorporated Chitosan as a scaffold for wound healing application. Life Sci 2021, 264.

  • Wang Y, Liu S, Yu W. Functionalized Graphene Oxide-Reinforced Chitosan Hydrogel as Biomimetic Dressing for Wound Healing. Macromol Biosci 2021, 21.

  • Salleh A, Mustafa N, Teow YH, Fatimah MN, Khairudin FA, Ahmad I, Fauzi MB. Dual-Layered Approach of Ovine Collagen-Gelatin/Cellulose Hybrid Biomatrix Containing Graphene Oxide-Silver Nanoparticles for Cutaneous Wound Healing: Fabrication, Physicochemical, Cytotoxicity and Antibacterial Characterisation. Biomedicines 2022, 10.

  • Sadeghianmaryan A, Sardroud HA, Allafasghari S, Yazdanpanah Z, Naghieh S, Gorji M, Chen X. Electrospinning of polyurethane/graphene oxide for skin wound dressing and its in vitro characterization. J Biomater Appl. 2020;35:135–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas K, Janani G, Udayakumar S, Deepika B, Girigoswami K. Rough edges of reduced graphene oxide (rGO) sheets elicit anticancerous activities: an in vitro study. Results Chem 2023, 6.

  • Suneetha M, Zo S, Choi SM, Han SS. Antibacterial, biocompatible, hemostatic, and tissue adhesive hydrogels based on fungal-derived carboxymethyl chitosan-reduced graphene oxide-polydopamine for wound healing applications. Int J Biol Macromol 2023, 241.

  • Dou Y, Zhang Y, Zhang S, Ma S, Zhang H. Multi-functional conductive hydrogels based on heparin–polydopamine complex reduced graphene oxide for epidermal sensing and chronic wound healing. J Nanobiotechnol 2023, 21.

  • Tanwar S, Arya A, Gaur A, Sharma AL. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. J Phys: Condens Matter 2021, 33.

  • Luo M, Fan T, Zhou Y, Zhang H, Mei L. 2D black phosphorus–based Biomedical Applications. Adv Funct Mater 2019, 29.

  • Zhang W, Kuang Z, Song P, Li W, Gui L, Tang C, Tao Y, Ge F, Zhu L. Synthesis of a Two-Dimensional Molybdenum Disulfide Nanosheet and Ultrasensitive Trapping of Staphylococcus Aureus for Enhanced Photothermal and Antibacterial Wound-Healing Therapy. Nanomaterials 2022, 12.

  • Harini K, Girigoswami K, Pallavi P, Gowtham P, Thirumalai A, Charulekha K, Girigoswami A. MoS2 nanocomposites for biomolecular sensing, disease monitoring, and therapeutic applications. Nano Futures 2023, 7.

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioactive Mater. 2022;9:461–74.

    Article 
    CAS 

    Google Scholar
     

  • Gao Q, Zhang X, Yin W, Ma D, Xie C, Zheng L, Dong X, Mei L, Yu J, Wang C et al. Functionalized MoS2 Nanovehicle with Near-Infrared Laser‐Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria‐Infected Wound Therapy. Small 2018, 14.

  • Yuwen L, Sun Y, Tan G, Xiu W, Zhang Y, Weng L, Teng Z, Wang L. MoS2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale. 2018;10:16711–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Y, Liu X, Liu Z, Xu Y. Visible-light‐driven photocatalysis‐enhanced nanozyme of TiO2 Nanotubes@MoS2 nanoflowers for efficient Wound Healing infected with Multidrug‐resistant Bacteria. Small 2021, 17.

  • Jin W, Song P, Wu Y, Tao Y, Yang K, Gui L, Zhang W, Ge F. Biofilm microenvironment-mediated MoS2 nanoplatform with its Photothermal/Photodynamic synergistic antibacterial molecular mechanism and Wound Healing Study. ACS Biomaterials Sci Eng. 2022;8:4274–88.

    Article 
    CAS 

    Google Scholar
     

  • Huang X-W, Wei J-J, Liu T, Zhang X-L, Bai S-M, Yang H-H. Silk fibroin-assisted exfoliation and functionalization of transition metal dichalcogenide nanosheets for antibacterial wound dressings. Nanoscale. 2017;9:17193–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yong Y, Zhou L, Gu Z, Yan L, Tian G, Zheng X, Liu X, Zhang X, Shi J, Cong W, et al. WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells. Nanoscale. 2014;6:10394–403.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie M, Yang M, Sun X, Yang N, Deng T, Li Y, Shen H. WS2 nanosheets functionalized by biomimetic lipids with enhanced dispersibility for photothermal and chemo combination therapy. J Mater Chem B. 2020;8:2331–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang N, Zhu M, Xu G, Liu N, Yu C. A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion. J Mater Chem B. 2020;8:3908–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radic Biol Med. 2007;42:1524–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbaszadeh A, Tehmasebi-Foolad A, Rajabzadeh A, Beigi-Brojeni N, Zarei L. Effects of Chitosan/Nano Selenium Biofilm on Infected Wound Healing in rats; an experimental study. Bull Emerg Trauma. 2019;7:284–91.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang W, Hu B, Yuan Y, Fang H, Jiang J, Li Q, Zhuo Y, Yang X, Wei J, Wang X. Visible light-responsive selenium nanoparticles combined with Sonodynamic Therapy to Promote Wound Healing. ACS Biomaterials Sci Eng. 2023;9:1341–51.

    Article 
    CAS 

    Google Scholar
     

  • Doostmohammadi M, Forootanfar H, Shakibaie M, Torkzadeh-Mahani M, Rahimi H-R, Jafari E, Ameri A, Amirheidari B. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. J Biomater Appl. 2021;36:193–209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramya S, Shanmugasundaram T, Balagurunathan R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol. 2015;32:30–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, Li Y, Ahmed AAQ, Cheng H, Shi Z, Yang G. In situ synthesized Selenium nanoparticles-decorated bacterial Cellulose/Gelatin hydrogel with enhanced Antibacterial, antioxidant, and anti‐inflammatory capabilities for facilitating skin Wound Healing. Adv Healthc Mater 2021, 10.

  • Altememy D, Javdani M, Khosravian P, Khosravi A, Moghtadaei Khorasgani E. Preparation of Transdermal Patch containing selenium nanoparticles loaded with doxycycline and evaluation of skin Wound Healing in a rat model. Pharmaceuticals 2022, 15.

  • Golmohammadi R, Najar-Peerayeh S, Tohidi Moghadam T, Hosseini SMJ. Synergistic antibacterial activity and Wound Healing properties of Selenium-Chitosan-Mupirocin Nanohybrid System: an in vivo study on Rat Diabetic Staphylococcus aureus Wound infection model. Sci Rep 2020, 10.

  • Li W, Liu Z, Fontana F, Ding Y, Liu D, Hirvonen JT, Santos HA. Tailoring porous Silicon for Biomedical Applications: from drug delivery to Cancer Immunotherapy. Adv Mater 2018, 30.

  • Zhang H, Liu D, Shahbazi MA, Mäkilä E, Herranz-Blanco B, Salonen J, Hirvonen J, Santos HA. Fabrication of a multifunctional Nano‐in‐micro drug delivery platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Adv Mater. 2014;26:4497–503.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarvis KL, Barnes TJ, Prestidge CA. Surface chemical modification to control molecular interactions with porous silicon. J Colloid Interface Sci. 2011;363:327–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma L, Song X, Yu Y, Chen Y. Two-Dimensional Silicene/Silicon nanosheets: an emerging Silicon‐composed nanostructure in Biomedicine. Adv Mater 2021, 33.

  • Duan W, Liu X, Zhao J, Zheng Y, Wu J. Porous Silicon Carrier endowed with Photothermal and Therapeutic effects for Synergistic Wound Disinfection. ACS Appl Mater Interfaces. 2022;14:48368–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Y, Yang Y, Duan W, Qu X, Wu J. Synergistic and On-Demand release of Ag-AMPs loaded on porous Silicon Nanocarriers for Antibacteria and Wound Healing. ACS Appl Mater Interfaces. 2021;13:16127–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng Q, Han K, Zheng C, Bai Q, Wu W, Zhu C, Zhang Y, Cui N, Lu T. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. J Colloid Interface Sci. 2022;607:1239–52.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji X, Kong N, Wang J, Li W, Xiao Y, Gan ST, Zhang Y, Li Y, Song X, Xiong Q et al. A Novel Top-Down synthesis of ultrathin 2D Boron Nanosheets for Multimodal Imaging‐guided Cancer Therapy. Adv Mater 2018, 30.

  • Xu J-W, Yao K, Xu Z-K. Nanomaterials with a photothermal effect for antibacterial activities: an overview. Nanoscale. 2019;11:8680–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie Z, Meng X, Li X, Liang W, Huang W, Chen K, Chen J, Xing C, Qiu M, Zhang B et al. Two-Dimensional Borophene: Properties, Fabrication, and Promising Applications. Research 2020, 2020.

  • Lv J, Qi Y, Tian Y, Wang G, Shi L, Ning G, Ye J. Functionalized boron nanosheets with near-infrared-triggered photothermal and nitric oxide release activities for efficient antibacterial treatment and wound healing promotion. Biomaterials Sci. 2022;10:3747–56.

    Article 
    CAS 

    Google Scholar
     

  • Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for efficient Singlet Oxygen Generation. J Am Chem Soc. 2015;137:11376–82.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tayari V, Hemsworth N, Fakih I, Favron A, Gaufrès E, Gervais G, Martel R, Szkopek T. Two-dimensional magnetotransport in a black phosphorus naked quantum well. Nat Commun 2015, 6.

  • Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for Cancer Theranostics. Adv Mater 2016, 29.

  • Huang K, Wu J, Gu Z. Black Phosphorus Hydrogel scaffolds enhance bone regeneration via a sustained supply of calcium-free phosphorus. ACS Appl Mater Interfaces. 2018;11:2908–16.

    Article 

    Google Scholar
     

  • Wang S, Weng J, Fu X, Lin J, Fan W, Lu N, Qu J, Chen S, Wang T, Huang P. Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy. Nanotheranostics. 2017;1:208–16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu YN, Guo S. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 2017, 30.

  • Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black phosphorus-loaded Separable Microneedles as Responsive Oxygen Delivery Carriers for Wound Healing. ACS Nano. 2020;14:5901–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L et al. In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proceedings of the National Academy of Sciences 2020, 117:28667–28677.

  • Liu B, Su Y, Wu S, Shen J. Local photothermal/photodynamic synergistic antibacterial therapy based on two-dimensional BP@CQDs triggered by single NIR light source. Photodiagn Photodyn Ther 2022, 39.

  • Zhou J, Li T, Zhang M, Han B, Xia T, Ni S, Liu Z, Chen Z, Tian X. Thermosensitive black phosphorus hydrogel loaded with silver sulfadiazine promotes skin wound healing. J Nanobiotechnol 2023, 21.

  • Bai X, Wang R, Hu X, Dai Q, Guo J, Cao T, Du W, Cheng Y, Xia S, Wang D, et al. Two-Dimensional Biodegradable Black Phosphorus nanosheets promote large full-thickness Wound Healing through in situ regeneration therapy. ACS Nano. 2024;18:3553–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding Q, Sun T, Su W, Jing X, Ye B, Su Y, Zeng L, Qu Y, Yang X, Wu Y et al. Bioinspired Multifunctional Black Phosphorus Hydrogel with antibacterial and antioxidant properties: a Stepwise Countermeasure for Diabetic skin Wound Healing. Adv Healthc Mater 2022, 11.

  • Zhao Y, Tian C, Liu Y, Liu Z, Li J, Wang Z, Han X. All-in-one bioactive properties of photothermal nanofibers for accelerating diabetic wound healing. Biomaterials 2023, 295.

  • Xue C, Sutrisno L, Li M, Zhu W, Fei Y, Liu C, Wang X, Cai K, Hu Y, Luo Z. Implantable multifunctional black phosphorus nanoformulation-deposited biodegradable scaffold for combinational photothermal/ chemotherapy and wound healing. Biomaterials 2021, 269.

  • Huang X-W, Wei J-J, Zhang M-Y, Zhang X-L, Yin X-F, Lu C-H, Song J-B, Bai S-M, Yang H-H. Water-based black Phosphorus Hybrid nanosheets as a moldable platform for Wound Healing Applications. ACS Appl Mater Interfaces. 2018;10:35495–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharker SM. Hexagonal Boron Nitrides (White Graphene): a promising method for Cancer Drug Delivery. Int J Nanomed. 2019;14:9983–93.

    Article 

    Google Scholar
     

  • Şen Ö, Emanet M, Çulha M. Stimulatory effect of Hexagonal Boron nitrides in Wound Healing. ACS Appl Bio Mater. 2019;2:5582–96.

    Article 
    PubMed 

    Google Scholar
     

  • Tarhan T, Şen Ö, Ciofani ME, Yılmaz D, Çulha M. Synthesis and characterization of silver nanoparticles decorated polydopamine coated hexagonal boron nitride and its effect on wound healing. J Trace Elem Med Biol 2021, 67.

  • Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional Titanium Carbide. Science. 2013;341:1502–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selvaraj S, Chauhan A, Verma R, Viswanathan K, Subbarayan R, Ghotekar S. Multifunctional biomedical applications of MXene-based hydrogels: a review. Inorg Chem Commun 2024, 164.

  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang R, Wen S, Cai S, Zhang W, Wu T, Xiong Y. MXene-based nanomaterials with enzyme-like properties for biomedical applications. Nanoscale Horizons. 2023;8:1333–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Li Z, Qiu J, Wang Q, Wang J, Zhang H, Chen T. Fascinating MXene nanomaterials: emerging opportunities in the biomedical field. Biomaterials Sci. 2021;9:5437–71.

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Fu R, Duan Z, Zhu C, Fan D. Artificial Nonenzymatic antioxidant MXene Nanosheet-Anchored Injectable Hydrogel as a mild photothermal-controlled oxygen release platform for Diabetic Wound Healing. ACS Nano. 2022;16:7486–502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Z, Wei W, Zhang M, Guo X, Zhang B, Wang D, Jiang X, Liu F, Tang J. Cryptotanshinone-Doped Photothermal Synergistic MXene@PDA nanosheets with Antibacterial and Anti‐Inflammatory properties for Wound Healing. Adv Healthc Mater 2023, 12.

  • Li H, Dai J, Yi X, Cheng F. Generation of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. Biomaterials Adv 2022, 140.

  • Xu X, Wang S, Wu H, Liu Y, Xu F, Zhao J. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surf B 2021, 207.

  • Li Y, Han M, Cai Y, Jiang B, Zhang Y, Yuan B, Zhou F, Cao C. Muscle-inspired MXene/PVA hydrogel with high toughness and photothermal therapy for promoting bacteria-infected wound healing. Biomaterials Sci. 2022;10:1068–82.

    Article 
    CAS 

    Google Scholar
     

  • Liu S, Li D, Wang Y, Zhou G, Ge K, Jiang L, Fang D. Flexible, high-strength and multifunctional polyvinyl alcohol/MXene/polyaniline hydrogel enhancing skin wound healing. Biomaterials Sci. 2022;10:3585–96.

    Article 
    CAS 

    Google Scholar
     

  • Zhang Z, Qi Z, Kong W, Zhang R, Yao C. Applications of MXene and its modified materials in skin wound repair. Front Bioeng Biotechnol 2023, 11.

  • Zhou L, Zheng H, Liu Z, Wang S, Liu Z, Chen F, Zhang H, Kong J, Zhou F, Zhang Q. Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting Multidrug-resistant Bacteria-infected Wound Healing. ACS Nano. 2021;15:2468–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu Y, Zeng Q, Hu Y, He J, Wang H, Deng C, Li D. MXene/zinc ion embedded agar/sodium alginate hydrogel for rapid and efficient sterilization with photothermal and chemical synergetic therapy. Talanta 2024, 266.

  • Mao L, Hu S, Gao Y, Wang L, Zhao W, Fu L, Cheng H, Xia L, Xie S, Ye W et al. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti3C2Tx) composite hydrogel as Wound Dressing for accelerating skin Wound Healing under Electrical Stimulation. Adv Healthc Mater 2020, 9.

  • Zhu H, Dai W, Wang L, Yao C, Wang C, Gu B, Li D, He J. Electroactive Oxidized Alginate/Gelatin/MXene (Ti3C2Tx) Composite Hydrogel with Improved Biocompatibility and Self-Healing Property. Polymers 2022, 14.

  • You D, Li K, Guo W, Zhao G, Fu C. Poly (lactic-co-glycolic acid)/graphene oxide composites combined with electrical stimulation in wound healing: preparation and characterization. Int J Nanomed. 2019;14:7039–52.

    Article 
    CAS 

    Google Scholar
     

  • Hao P-C, Burnouf T, Chiang C-W, Jheng P-R, Szunerits S, Yang J-C, Chuang E-Y. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnol 2023, 21.

  • Koyyada A, Orsu P. Nanofibrous scaffolds of carboxymethyl guargum potentiated with reduced graphene oxide for in vitro and in vivo wound healing applications. Int J Pharm 2021, 607.

  • Heo JS. Selenium-stimulated exosomes enhance Wound Healing by modulating inflammation and angiogenesis. Int J Mol Sci 2022, 23.

  • Yang J, Yang YW. Metal–Organic frameworks for Biomedical Applications. Small 2020, 16.

  • Yang M, Zhang J, Shi W, Zhang J, Tao C. Recent advances in metal–organic frameworks and their composites for the phototherapy of skin wounds. J Mater Chem B. 2022;10:4695–713.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu L-Q, Chen X-Y, Cai M-H, Tao X-H, Fan Y-B, Mou X-Z. Surface Engineered Metal-Organic frameworks (MOFs) based Novel Hybrid systems for Effective Wound Healing: a review of recent developments. Front Bioeng Biotechnol 2020, 8.

  • Xing F, Ma H, Yu P, Zhou Y, Luo R, Xiang Z, Maria Rommens P, Duan X, Ritz U. Multifunctional metal–organic frameworks for wound healing and skin regeneration. Mater Design 2023, 233.

  • Cun J-E, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal–organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022, 305.

  • Li Y, Wen G, Li J, Li Q, Zhang H, Tao B, Zhang J. Synthesis and shaping of metal–organic frameworks: a review. Chem Commun. 2022;58:11488–506.

    Article 
    CAS 

    Google Scholar
     

  • Wang S, Yan F, Ren P, Li Y, Wu Q, Fang X, Chen F, Wang C. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application. Int J Biol Macromol. 2020;158:9–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ximing G, Bin G, Yuanlin W, Shuanghong G. Preparation of spherical metal–organic frameworks encapsulating ag nanoparticles and study on its antibacterial activity. Mater Sci Engineering: C. 2017;80:698–707.

    Article 

    Google Scholar
     

  • Zhang N, Zhang X, Zhu Y, Wang D, Liu W, Chen D, Li R, Li S. MOF/MXene-loaded PVA/chitosan hydrogel with antimicrobial effect and wound healing promotion under electrical stimulation and improved mechanical properties. Int J Biol Macromol 2024, 264.

  • Wang T-L, Zhou Z-F, Liu J-F, Hou X-D, Zhou Z, Dai Y-L, Hou Z-Y, Chen F, Zheng L-P. Donut-like MOFs of copper/nicotinic acid and composite hydrogels with superior bioactivity for rh-bFGF delivering and skin wound healing. J Nanobiotechnol 2021, 19.

  • Chen Y, Cai J, Liu D, Liu S, Lei D, Zheng L, Wei Q, Gao M. Zinc-based metal organic framework with antibacterial and anti-inflammatory properties for promoting wound healing. Regenerative Biomaterials 2022, 9.

  • Wang C, Luo Y, Liu X, Cui Z, Zheng Y, Liang Y, Li Z, Zhu S, Lei J, Feng X, Wu S. The enhanced photocatalytic sterilization of MOF-Based nanohybrid for rapid and portable therapy of bacteria-infected open wounds. Bioactive Mater. 2022;13:200–11.

    Article 

    Google Scholar
     

  • Li J, Yan Y, Chen Y, Fang Q, Hussain MI, Wang L-N. Flexible curcumin-loaded Zn-MOF hydrogel for long-term drug release and antibacterial activities. Int J Mol Sci 2023, 24.

  • Yao S, Chi J, Wang Y, Zhao Y, Luo Y, Wang Y. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting Wound Healing. Adv Healthc Mater 2021, 10.

  • Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, Zhou C, Blum NT, Zhang W, Shi H, et al. Multifunctional Magnesium Organic Framework-based Microneedle Patch for accelerating Diabetic Wound Healing. ACS Nano. 2021;15:17842–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Q, Liu K, Jiang T, Ren S, Kang Y, Li W, Yao H, Yang X, Dai H, Chen Z. Injectable and self-healing chitosan-based hydrogel with MOF-loaded α-lipoic acid promotes diabetic wound healing. Mater Sci Engineering: C 2021, 131.

  • Hu WC, Younis MR, Zhou Y, Wang C, Xia XH. In situ fabrication of Ultrasmall Gold Nanoparticles/2D MOFs hybrid as Nanozyme for Antibacterial Therapy. Small 2020, 16.

  • Chen M, Long Z, Dong R, Wang L, Zhang J, Li S, Zhao X, Hou X, Shao H, Jiang X. Titanium Incorporation into Zr-Porphyrinic Metal–Organic frameworks with enhanced antibacterial activity against Multidrug‐resistant pathogens. Small 2020, 16.

  • Zeng Y, Wang C, Lei K, Xiao C, Jiang X, Zhang W, Wu L, Huang J, Li W. Multifunctional MOF-Based Microneedle Patch with Synergistic Chemo‐Photodynamic Antibacterial Effect and sustained release of growth factor for Chronic Wound Healing. Adv Healthc Mater 2023, 12.

  • Yao S, Wang Y, Chi J, Yu Y, Zhao Y, Luo Y, Wang Y. Porous MOF microneedle array Patch with Photothermal responsive nitric oxide delivery for Wound Healing. Adv Sci 2021, 9.

  • Yang G, Fan R, Yang J, Yi L, Chen S, Wan W. Magnesium/gallic acid bioMOFs laden carbonized mushroom aerogel effectively heals biofilm-infected skin wounds. Biomaterials 2023, 302.

  • Gao P, Wang M, Chen Y, Pan W, Zhou P, Wan X, Li N, Tang B. A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chem Sci. 2020;11:6882–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohajer F, Mohammadi Ziarani G, Badiei A, Iravani S, Varma RS. Recent advances in covalent organic frameworks (COFs) for wound healing and antimicrobial applications. RSC Adv. 2023;13:8136–52.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Chen C, Zhao J, Tan M, Zhai S, Wei Y, Wang L, Dai T. Electrospun Fibrous Membrane Containing a Cyclodextrin Covalent Organic Framework with Antibacterial properties for accelerating Wound Healing. ACS Biomaterials Sci Eng. 2021;7:3898–907.

    Article 
    CAS 

    Google Scholar
     

  • Ding LG, Wang S, Yao BJ, Li F, Li YA, Zhao GY, Dong YB. Synergistic Antibacterial and Anti-inflammatory effects of a drug‐loaded Self‐Standing Porphyrin‐COF membrane for efficient skin Wound Healing. Adv Healthc Mater 2021, 10.

  • Wang X, Sun B, Ye Z, Zhang W, Xu W, Gao S, Zhou N, Wu F, Shen J. Enzyme-responsive COF-Based thiol-targeting Nanoinhibitor for curing bacterial infections. ACS Appl Mater Interfaces. 2022;14:38483–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou Y, Wang P, Zhang A, Qin Z, Li Y, Xianyu Y, Zhang H. Covalent Organic Framework-Incorporated Nanofibrous membrane as an Intelligent platform for Wound Dressing. ACS Appl Mater Interfaces. 2022;14:8680–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun B, Wu F, Wang X, Song Q, Ye Z, Mohammadniaei M, Zhang M, Chu X, Xi S, Zhou N et al. An optimally designed Engineering Exosome–Reductive COF Integrated Nanoagent for synergistically enhanced Diabetic Fester Wound Healing. Small 2022, 18.

  • Zhang H, Fan T, Chen W, Li Y, Wang B. Recent advances of two-dimensional materials in smart drug delivery nano-systems. Bioactive Mater. 2020;5:1071–86.

    Article 

    Google Scholar
     

  • Chen Y, Wu Y, Sun B, Liu S, Liu H. Two-dimensional nanomaterials for Cancer Nanotheranostics. Small 2017, 13.

  • Ji D-K, Ménard-Moyon C, Bianco A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv Drug Deliv Rev. 2019;138:211–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Read more

    Local News